Application of the Discrete Moment Problem for Numerical Integration and Solution of a Special Type of Moment Problems
نویسندگان
چکیده
OF THE DISSERTATION Application of the discrete moment problem for numerical integration and solution of a special type of moment problems by Mariya Naumova Dissertation Director: András Prékopa We present a brief survey of some of the basic results related to the classical continuous moment problems (CMP) and the recently developed discrete moment problems (DMP), clarifying their relationship. We also introduce a new numerical integration method, based on DMP and termed Discrete Moment Method (DMM), that can be used for univariate piecewise higher order convex functions. This means that the interval where the function is defined can be subdivided into non-overlapping subintervals such that in each interval all divided differences of given orders, do not change the sign. The new method uses piecewise polynomial lower and upper bounds on the function, created in connection with suitable dual feasible bases in the univariate discrete moment problem and the integral of the function is approximated by tight lower and upper bounds on them. Numerical illustrations are presented for the cases of the normal, exponential, gamma and Weibull probability density functions. We show how a similar approach can be applied for solving the problems of a special structure, namely the discrete conditional moment problems and present the corresponding numerical results. Finally, we present novel applications to valuations of financial instruments.
منابع مشابه
The effect of discrete lateral and torsional bracings stiffness on the elastic lateral-torsional buckling of mono-symmetric I beam, under the concentrated moment
When the out-of-plane stiffness of a beam is remarkably lower than the in-plane stiffness, the lateral-torsional buckling occurs. In this study, the behavior of mono-symmetric I-beams with discrete torsional and lateral bracings under the concentrated moment is investigated using the finite element analyses. Then, based on the numerical analyses, equation for the stiffness requirement is propos...
متن کاملFUZZY GOAL PROGRAMMING TECHNIQUE TO SOLVE MULTIOBJECTIVE TRANSPORTATION PROBLEMS WITH SOME NON-LINEAR MEMBERSHIP FUNCTIONS
The linear multiobjective transportation problem is a special type of vector minimum problem in which constraints are all equality type and the objectives are conicting in nature. This paper presents an application of fuzzy goal programming to the linear multiobjective transportation problem. In this paper, we use a special type of nonlinear (hyperbolic and exponential) membership functions to ...
متن کاملCVaR Reduced Fuzzy Variables and Their Second Order Moments
Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملMoment Inequalities for Supremum of Empirical Processes of U-Statistic Structure and Application to Density Estimation
We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density estimation and estimation of the distribution function for functions of observations.
متن کامل